estimation of industrial production costs, using regression analysis, neural networks or hybrid neural - regression method?

Authors
abstract

estimation (forecasting) of industrial production costs is one of the most important factor affecting decisions in the highly competitive markets. thus, accuracy of the estimation is highly desirable. hibrid regression neural network is an approach proposed in this paper to obtain better fitness in comparison with regression analysis and the neural network methods. comparing the estimated results from regression analysis and neural networks with the hybrid neural-regression method has indicated the superiority of the latter method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Estimation of Industrial Production Costs, Using Regression Analysis, Neural Networks or Hybrid Neural - Regression Method?

Estimation (Forecasting) of industrial production costs is one of the most important factor affecting decisions in the highly competitive markets. Thus, accuracy of the estimation is highly desirable. Hibrid Regression Neural Network is an approach proposed in this paper to obtain better fitness in comparison with Regression Analysis and the Neural Network methods. Comparing the estimated resul...

full text

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Construction cost estimation of spherical storage tanks: artificial neural networks and hybrid regression—GA algorithms

One of the most important processes in the early stages of construction projects is to estimate the cost involved. This process involves a wide range of uncertainties, which make it a challenging task. Because of unknown issues, using the experience of the experts or looking for similar cases are the conventional methods to deal with cost estimation. The current study presents data-driven metho...

full text

Rock Brittleness Prediction Using Geomechanical Properties of Hamekasi Limestone: Regression and Artificial Neural Networks Analysis

The cold climate is a favorable parameter for the development of tension cracks and decrease of rock brittleness. Therefore, this paper attempts to investigate the Hamekasi porous limestone in order to predict the brittleness indices during freeze-thaw cycles. The freeze–thaw test was executed for one cycle including 16 h of freezing, and 8 h of thawing. The geo mechanical properties and brittl...

full text

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

estimation of the southern pars gas field’s permeability using general regression neural networks (grnn)

the permeability is a main property of oil reservoirs that shows the ability of rocks in the conduct of fluids such as oil, water and gas through the pore spaces of reservoir. the determination of the permeability is a crucial task in reserve estimation, production and development of oil reservoirs. due to this, an accurate estimate of such important reservoir rock parameter should not be made ...

full text

My Resources

Save resource for easier access later


Journal title:
iranian economic review

جلد ۱۱، شماره ۱۶، صفحات ۱۷-۳۰

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023